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Abstract—This article proposes a model to simultaneously
plan truck arrivals, truck departures and internal pallet handling
in a crossdocking platform. The objective is to minimize both the
total number of pallets put in storage on the planning horizon,
and the dissatisfaction of the transportation providers, by creating
a truck schedule as close as possible to the wished schedule they
communicate in advance. The problem is modeled with an integer
program, which is tested on generated instances to assess its
performances, especially regarding the computation time. Since
the execution takes too long to be used by platform managers
on a daily basis, two heuristics are also proposed and tested. We
show in which conditions each heuristic performs best, which can
help in choosing a solution method when confronted to a real-life
problem.

I. INTRODUCTION

In a context of economic tensions and global competition,
where consumers become highly impatient and volatile, the
industrial competitive advantage can lie in more intensive and
faster goods flow. The cross-docking technique is meant to
bring rapidity and reactivity in the supply chain. A cross
docking facility (also called crossdock) is a logistics platform
where the goods are unloaded from inbound trucks, sorted,
dispatched, and directly reloaded in outbound trucks. Inventory
is not necessarily prohibited but reduced to a minimum,
therefore most of the goods stay less than 24 hours in the cross
dock (Li et al. [1]). Interested readers can refer to Van Belle
et al. [2] for a review of the state-of-the-art in cross-docking.

The advantages of such a just-in-time organization are
known: speeding the goods flow, increasing the reactivity,
cutting the inventory costs (Apte et al. [3]). Nevertheless, the
synchronization of the trucks is a key element for a fluent
functioning of the platform: a flawless planning system is
thus required for a successful cross dock implementation.
Warehouse operations planning problems are numerous and
an extensive review can be found in Gu et al. [4]. However,
only a few research papers deal with the scheduling of the
daily operations (truck arrivals, departures, storage) inside a
cross dock.

This article proposes a model to plan the internal transfers
in a cross-dock and schedule the arrivals and departures of
the inbound and outbound trucks. The problem consisting in
scheduling trucks on a given number of doors, over a given
time horizon, is called the truck scheduling problem. For a

review of the papers dealing with this problem, see Boysen
and Fliedner [5]. Several variants of this problem have been
identified: the first one seeks to schedule the trucks on specific
doors, in order to minimize the total distance of the shipments
inside the platform. A second approach seeks to minimize
the costs; for instance, Alpan et al. [6] propose a model to
minimize the total inventory and preemption costs. The third
approach considers the time dimension as an optimisation
objective; see for instance Boysen et al. [7] who give insights
on a basic inbound and outbound truck scheduling problem
with one inbound and one outbound door, minimizing the
makespan.

The notion of delay or tardiness of the shipments in truck
scheduling problem is considered in the following articles:
Boysen et al. [5] deal with a cross docking problem with
fixed outbound schedules, where the objective function is to
minimize the weighted number of delayed shipments. Boysen
[8] proposes a model for a frozen food platform in which the
storage is forbidden. In this model, the objective is to minimize
the flow time, processing time and tardiness of the outbound
trucks. In both papers the focus is on the tardiness of the
outbound operations.

In a logistics platform, the punctuality of the trucks is of
crucial importance for the managers, not only for the outbound
but also for the inbound trucks. Early truck arrivals may disturb
the internal operations as much as delays (e.g. unexpected
congestion inside the platform or in the parking area, need for
a reorganization of internal resources, etc.). Therefore, unlike
previous work found in the literature, this article considers both
the earliness and tardiness of the trucks, for both inbound and
outbound operations.

The earliness or tardiness of a given truck is only meaning-
ful when compared to a reference, a wished arrival or departure
time. In order to bring more flexibility, we define this reference
as a time window rather than a single time. The notion of time
windows for the loading or the unloading operation is first
used by Lim et al. [9], who consider general transshipment
networks, with multiple platforms, where both loading and
unloading are done within specified time windows at different
locations. Regarding crossdock internal operations scheduling,
time windows are introduced by Lim et al. [10]. They describe
a truck dock assignment problem in which the trucks are loaded
or unloaded during fixed time windows. Their approach differs



from ours because Lim et al. take the layout of the cross dock
into account and minimize the goods travel distance, while
our focus point is on earliness and tardiness of inbound and
outbound trucks.

To the best of our knowledge, there is only one paper deal-
ing with a crossdock scheduling problem with time windows
and tardiness penalties. Miao et al. [11] search for an inbound
and outbound truck assignment which minimizes the transfer
costs and lateness penalties, subject to time windows for truck
arrival and departures. The layout is taken into account, since
the transfer cost used depends on the distance to be covered by
the handling devices. Miao et al. [11] assume that a late truck
is lost, and the lateness penalty used is the total number of
unfulfilled shipments. In reality, this assumption barely holds:
according to our industrial experience, a truck is loaded and
goods are delivered despite the tardiness. Furthermore, the
magnitude of lateness is very important since small delays may
be caught up during the transportation, from the platform to the
client. We, therefore, use the time windows as soft constraints,
and consider penalties on the total tardiness. Other differences
are related to internal operations. In our case, the transfer of
goods inside the platform is done in hidden time, hence the
distance traveled is not of importance. And finally, we consider
temporary storage which is not explicitly modeled in Miao
et al. [11]. In crossdocks, existence of a temporary storage
adds a certain flexibility in operations management, but also
generates costs. We express the related costs with penalties on
the utilization of the stock.

To sum up, this paper proposes a model to plan inbound
and outbound truck arrivals and departures, as well as pallet
moves through the cross dock. The objective is to stay as close
as possible to a wished trucks planning given as input, while
minimizing the inventory level.

The rest of the paper is organized as follows. In Section II
we present and formulate the problem with an integer program.
Section III presents the computation limits of such a formula-
tion. Two different heuristics are then presented in Section IV,
to build feasible solutions in reasonable time for real size
problems. Numerical tests assessing the performance of the
heuristics are also presented in this section. Finally, concluding
remarks are given in Section V.

II. PROBLEM DEFINITION AND MODELING

We wish to build a schedule of the inbound and outbound
trucks, maximizing the transportation providers’ satisfaction
and minimizing storage. The goal of the model is to provide
the logistics manager with a decision-aid tool for scheduling
its operations and storage plan.

For the inbound and outbound trucks, the manager knows
the preferences of the transportation provider regarding arrival
and departure times. The employees timetabling being crucial
for the platform overall performance, the manager needs pre-
cise information about the workload inside the platform, both
for moves from trucks to trucks and for moves to stock (which
require different forklift licenses). Tracking pallet moves is
also needed to ensure the synchronization of the inbound flows
with the outbound flows.

A. Assumptions

We assume that the doors have an exclusive mode of service
(Boysen and Fliedner [5]), which means that each door is either
inbound or outbound, but cannot switch from one role to the
other during the day. This assumption is common in academic
work (see for example Boysen and Fliedner [5]), and it is
also a common practice in industry – even though it may
lower the efficiency of the dock utilization. The reason is that
having fixed inbound and outbound doors eases the operations
management inside a platform. The number of inbound and
outbound doors is thus known and used as input data.

We assume that transfer, loading and unloading operations
are all done within the same time period; consequently we
define the time period to be long enough (e.g. at least half an
hour) to ensure the product transfers in masked time. We do
not consider the distance of the transfer, and hence the location
of the door in the platform is not taken into account.

We make the hypothesis that the exact content of the
inbound trucks (number of pallets for each destination) is
known. When the trucks arrive, we assume they are entirely
unloaded on the dock floor (then presumably checked and
scanned for the reception in the WMS). It means that the
pallets can then be picked from the floor in any order. The
outbound trucks have a fixed capacity C, and cannot leave
before they are fully loaded.

When the matching truck is not available to load a given
pallet, the pallet is placed in storage – there are no stock
capacity constraints. Note that our model does not follow a
FIFO policy to empty the stock. We consider that the pallets
will not be stored for a very long time, therefore the costly
operation is the placing in storage.

B. Input data

From the assumptions detailed above, we can make a list
of the input data we consider in our model:

H set of time periods (e.g. half an hour) in the planning
horizon considered

I set of inbound trucks
O set of outbound trucks
D set of destinations

Qid number of pallets for destination d ∈ D in truck i ∈ I
Zdo = 1 if truck o ∈ O is for destination d ∈ D, 0

otherwise
N I number of inbound doors
NO number of outbound doors
M maximum number of units that can be moved within

one time period from one truck to another
C outbound trucks capacity

The data listed above (and especially the truck capacity, the
number of inbound and outbound doors and the bound on the
number of units moved) all correspond to physical constraints
in the cross dock, that cannot be violated. They will therefore
become hard constraints in our model.

For each inbound (resp. outbound) truck, we know its
earliest possible arrival time and latest possible departure time.
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Therefore, we can enumerate the possible slots in which the
truck could be present. We note Ki (resp. Ko) as the set of
possible presence slots of the truck i ∈ I (resp. o ∈ O). These
possible presence slots are described by matrices W I and WO.

W I
ikh = 1 if hour h ∈ H is in slot k ∈ Ki for inbound

truck i ∈ I
WO

okh = 1 if hour h ∈ H is in slot k ∈ Ko for outbound
truck o ∈ O

We assume that we also know the wishes of the transport
provider regarding the arrival and presence time of trucks. We
seek at satisfying them as much as possible, but time slots
can be changed if necessary for the ongoing operations. Those
wishes are therefore seen as soft constraints: if trucks are
scheduled outside their wished slots, penalties are paid. Those
penalties ΠI and ΠO are therefore defined as follows:

ΠI
ik penalty paid for using slot k ∈ Ki for truck i ∈ I ,

if k is outside the wished time window expressed by
the transport provider;

ΠO
ok penalty paid for using slot k ∈ Ko for truck o ∈ O.

C. Decision variables

The model aims at defining the truck schedule, with the
objective of being as close as possible to the wishes of the
transportation providers, and at the same time minimizing the
storage. Monitoring the pallet moves is necessary to ensure
the synchronization of the inbound and outbound flows. The
model therefore uses the following decisions variables:

xhio amount of units going from truck i to truck o at time
period h;

wI
ik =1 if slot k ∈ Ki is chosen for truck i, 0 otherwise;

wO
ok =1 if slot k ∈ Ko is chosen for truck o, 0 otherwise;

sIhid amount of products with destination d going from
truck i to the storage location at time period h;

sOho amount of products going from the storage location
to truck o at time period h;

shd amount of products for destination d stored at time
period h.

D. Integer program

The planning problem can now be formulated as an integer
program (IP*): see above.

The objective is to minimize the time windows penalties
for the inbound and the outbound trucks, as well as the number
of pallets placed in the storage area. α, β and γ are the
coefficients that weight those often conflicting objectives.

Constraint (1) (resp. (2)) checks that the number of inbound
(resp. outbound) trucks present during a given time period
does not exceed the number of inbound (resp. outbound) doors.
Constraint (3) (resp. (4)) ensures that the pallet moves from
the inbound trucks (resp. to the outbound trucks) occur only
when the concerned truck is present. Constraint (5) makes sure
that all the pallets of a given inbound truck are unloaded and
dispatched to the right destination. Constraint (6) indicates
the capacity of the outbound trucks, and makes sure that
they are fully loaded. Constraints (7) and (8) make sure that
each inbound (resp. outbound) truck is assigned to a single
presence time window. Constraints (9) and (10) give the stock
conservation rule for all h ∈ H r {0} and for h = 0,
respectively.



Figure 1: Execution time of (IP*) as a function of the concentration of trucks

III. NUMERICAL TESTS AND LIMITS OF THE INTEGER
PROGRAM

In this section, we first present the instance generation
protocol, then present some numerical results based on the
generated instances.

A. Instances generation

We consider that an instance is characterized by the pa-
rameters |H|, |I|, |O|, |D|, N I , NO, M , and C. Note that
the total number of destinations should be picked such that
|D| ≤ |O|, to make sure that there is at least one outbound
truck per destination.

For each inbound (resp. outbound) truck, we set 0 as
earliest arrival time and |H| as latest departure time – this
is chosen to make sure that we do not restrict the solution
space when testing. Two random integers are picked within
this range to get the wished arrival and departure time; then
W I and WO are generated as explained in section II-B.

The penalties ΠI and ΠO are directly calculated from W I

and WO, as the number of hours outside the “wished” range
in slot k.

To generate Zdo, the first |D| columns of the matrix are
filled with “1” along the diagonal, to make sure that each
destination is served by at least one truck. The remaining
columns are filled picking a random destination number for
each truck left.

Qid describes the content of the incoming trucks. Its
generation process must ensure that the inbound quantity for
each destination is equivalent to the capacity of the outbound
trucks for this destination, and that the number of pallets per
inbound truck is not too different from one truck to another.
With these elements in mind, we calculate for each destination,
the total number of inbound pallets C

∑
o∈O Zdo. This quantity

is spread amongst the inbound trucks by picking a random
truck for each pallet, and allocating this pallet to the truck if it
is not full – the maximum quantity per truck being 1 + C|O|

|I| .

Finally, the values for M , N I , No and |H| are chosen
carefully to avoid obviously infeasible instance sets.

B. Numerical results

All linear programs are run with IBM ILOG CPLEX
Optimizers 12.2, on a personal computer with a 2.40GHz
processor and a 4.00GB RAM.

The tests are carried with the following input parameters:
|H| = 10, |D| = 4, M = 4, C = 4. The number of doors is
fixed to N I = NO = 2, N I = NO = 3 or N I = NO = 4.
Note that there are only four to eight doors in total, thus the
instances tested can only represent a very small platform. The
coefficients α, β and γ are assumed equally important and are
all set to 0.33. We test the performance of (IP*) with different
number of doors by increasing the number of trucks |I| and
|O|, setting |I| = |O|. For the sake of comparison, we present
in Figure 1 the results as a function of the concentration of
trucks. The concentration of trucks (in trucks per door per
hour) is defined by the ratio R = |I|+|O|

(NI+NO)|H| .

Even with very small platforms (8 doors or less) and
low concentration rates, we can see that the execution times
increases very quickly. If we consider that 10 seconds is the
limit for a logistics manager to use this program as a daily
decision-aid tool, then we cannot deal with more than 10 trucks
on a platform with two inbound and two outbound doors.
Obviously, the performances of (IP*) in terms of computation
time are not good enough to use it on a daily basis within
crossdocks.

IV. HEURISTICS

Since the integer program presented in Section II-D takes
too long to compute instances of real-life size, we propose
in this section two heuristics. The principle is to relax a part
of (IP*), in order to simplify the number of decisions taken
during the execution of (IP*). In the first heuristic, we fix
the inbound trucks schedule, while the outbound schedule is
considered fixed in the second heuristic. In both heuristics, the
schedule of the trucks considered as “fixed” is first determined
with a dedicated integer program. The principle is described
in Figure 2.

A. Heuristic 1

The first step of heuristic (IP1) uses the wished presence
time windows of the outbound trucks as data in order to



Figure 2: Principle of heuristics H1 and H2

determine a good schedule for the inbound trucks. Then the
second step (IP*) uses this inbound truck schedule as data, in
order to compute the final schedule of the outbound trucks.

Let us assume, just for this first part of the heuristic, that the
wished departure and arrival times of the outbound trucks are
all satisfied. Using the matrix Z which indicates the destination
of each outbound truck, we can easily calculate XO, a binary
matrix defined as follows:

XO
dh = 1 if there is an outbound truck for the destination

d present at time period h, 0 otherwise.

Integer program (IP1) uses wI
ik as a decision variable, as

well as two new variables that measure the difference between
the inbound and the outbound plans:

δ+dh for time period h ∈ H , positive difference between
the number of pallets for destination d ∈ D available
to be unloaded, and the number of pallets that can
be loaded in the trucks for d present at the outbound
doors.

δ−dh for time period h ∈ H , negative difference between
the number of pallets for destination d ∈ D available
to be unloaded, and the number of pallets that can
be loaded in the trucks for d present at the outbound
doors.

(IP1) is thus formulated as shown here opposite.

The objective is to minimize the total difference between
the inbound pallet supply and the outbound pallet demand.
Constraint (11) defines δ+ and δ− as described above. Con-
straint (12) ensures that the number of inbound doors is
enforced, while constraint (13) makes sure that only one time
window is assigned to each inbound truck.

In the second step, the outcome of (IP1) wI
ik is used as a

data to run (IP*). The formulation of (IP*) does not change,

min
∑

d∈D,h∈H(δ+dh + δ−dh)

s.t.
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(IP1)

except for the fact that wI
ik is no longer a decision variable

but rather an input data. Constraints (1) and (7) are therefore
discarded. Note that the term of the objective function which
includes wI

ik is not removed, although it is now a constant,
so that the objective value stays comparable to the results of
(IP*).

B. Heuristic 2

The first step of heuristic (IP2) builds a feasible outbound
truck schedule which minimizes the earliness and tardiness of
the outbound trucks, independently of the inbound data. Then,
considering the outbound data fixed, (IP*) is used to generate
the inbound truck schedule.

Integer program (IP2) uses wO
ok as the only decision

variable. It is formulated as shown below.

The objective is to minimize the outbound transport
providers’ dissatisfaction. Constraint (14) ensures that the
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number of trucks in use for any time period does not exceed
the number of outbound doors, while constraint (15) makes
sure that only one time window is assigned to each outbound
truck.

In the second step, the outcome of (IP2) wO
ok is used as a

data to run (IP*). Similarly to what was done in section IV-A,
the formulation of (IP*) does not change, except for the fact
that wO

ok is no longer a decision variable but rather an input
data. Constraints (2) and (8) are now discarded. The term of
the objective function which includes wO

ok is not removed, for
the sake of comparison.

C. Numerical tests

In this section, we test the heuristics described above,
in order to assess their performances regarding computation
time, compare their results to the optimal solution, and see in
which situation each heuristic provides good results. Similar to
Section III-B, the data parameters are set such that |H| = 10,
|D| = 4, M = 4 and C = 4.

Keeping the concentration of trucks fixed and equal to 0.4
truck/door/hour, we monitor in the first set of tests the total
execution time of the heuristic when the number of doors
increases. The coefficients α, β and γ are all equal and set to
0.33. Each value in the figure is the average of the execution
times obtained for 10 different instances, generated randomly
from the parameters, as explained in section III-A. The result
is displayed in Figure 3.

Figure 3: Execution time when the number of doors increases
(concentration ratio R = 0.4)

First of all, we note that the heuristics are 75 times faster
than (IP*) on the average for 2 doors and 8 trucks in total.
The execution of (IP*) for 4 doors and 16 trucks takes 205
seconds on average. The solution of (IP*) for this instance is
not represented in the figure to avoid stretching the scale too
much. The heuristics are 570 times faster than (IP*) in this
case.

H1 can be computed in less than 10 seconds with up to 72
doors in the platform, whereas H2 can only handle 64 doors
in 10 seconds. Within one minute, we can get a result for 80
doors. We note that the execution time increases exponentially
beyond 80 doors. Since cross-docking platforms can be larger
than 80 doors, different strategies should be applied to deal
with the largest platforms. Metaheuristics using neighbourhood
search is an option to be investigated in that case.

In the second set of tests, we assess the performance of
the heuristics compared to (IP*). We therefore fix the number
of doors (N I = NO = 4) and the number of trucks (|I| =
|O| = 8). The instance is deliberately small (concentration 0.2
trucks/door/hour) so that the computation time of (IP*) stays
reasonable. For each dot on figure 4, 10 different instances
are generated from the data parameters, and we calculate the
difference between the objective values of the heuristics and
the optimal value given by (IP*). We vary the coefficients α,
β and γ, keeping α+ β + γ = 1.

We observe that H2 always performs better than H1.
However, when α is small, the results are very close to the
optimum for both heuristics (less than 5% of deviation for
H1 and 2% for H2). It means that both heuristics perform
well when the inbound truck schedule penalties do not weight
much in the objective function.

The results are insensitive to β, the parameter weighting
the outbound truck schedule penalties. It is the consequence
of the fact that both heuristics focus primarily on the perfor-
mance of the outbound truck schedule: H2 fixes the outbound
schedule, while H1 fixes the inbound schedule subject to the
synchronization of the inbound and outbound plans.

H2 is less sensitive than H1 to the changes in parameters
α, β and γ, and performs quite well compared to (IP*): the
figure 4 shows less than 6% of deviation for any combination
of α, β and γ. Therefore, H2 can be used to solve any instance
of reasonable size. However, for the big instances with small
α, H1 may be more interesting to use since its execution time
is shorter, and the results are not much deteriorated.

V. CONCLUSION

This article considers a planning problem for the internal
operations (namely truck presence and pallet moves) of a
crossdocking platform. The objective is to minimize both
the utilization of the storage and the dissatisfaction of the
transportation providers. The problem is modeled with an
integer program. The tests carried out with generated instances
show that the computation time is too long to be used by
platform managers on a daily basis, thus two heuristics are
also proposed and tested. The observations of the conditions
in which the different heuristics perform best can help refining
the decision-aid tool.
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Figure 4: Difference to optimal of the heuristics H1 and H2, when varying α, β and γ

The perspectives are numerous regarding possible exten-
sions of this work. For the time being we consider infinite
storage capacity; one extension is to limit the storage capacity.
In order to help the manager to create feasible employee
schedules, the model should also aim at smoothing the work-
load balance through the day. It would be interesting to
have a flexible door allocation, where doors can change their
“inbound” and “outbound” roles during the day, depending
on the activity level. The distance or congestion could also
be taken into account in the doors assignment process; for
instance the model proposed by Yu et al. [12] or Bozer and
Carlo [13] could be connected to our model.

Last, but not least, the proposed model assumes that the
input data is fully known. To be closer to the actual situations
encountered daily in cross dock management, it should be pos-
sible to take decisions under uncertainties, especially regarding
the contents of the trucks. The proposed schedule should also
be as robust as possible to unexpected changes in truck arrival
times.
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