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ABSTRACT

Discrete-event
mathematical-programming optimization (DMPO) models
are often used together in a variety of ways. Taper
discusses the issues that modelers must address wsirey
DES models to test the performance of DMPO models i
stochastic environment. The issues arise duriniglatidn of
the simulation models — comparing the simulatiosults
under deterministic conditions with results frontedteinistic
optimization models. In our case, the issues areeatkfrom
validating simulation models that are used to ttst
performance of scheduling and resource allocatiaueais
(integer and mixed-integer programming optimization
models) under various types of uncertainty. The ef®dre
from our work in crossdocking operations; however
believe they are relevant to a wide variety of peab
domains. In addition to describing the issues, vifero
suggestions on how modelers might address the owce

INTRODUCTION

Modelers often employ both simulation and optimaat
models, combined or related in various ways, toreskl a
particular problem. This paper identifies four telaships
between simulation and optimization models thabvalthe
two disparate modeling types to be combined to esfda
specific problem. These relationships, as illustiah Figure
1, are defined as to whether they are recursiveoband as
to which model type utilizes (or is supported g bther.

The relationship in Panel (a) of Figure 1 is reimgrsvith a
simulation model utilizing an optimization model.nA
optimal decision is made within a simulation modetl thus
optimization supports simulation. For instanceau8ken et
al. (2012) simulate the operations within a logistetwork
using optimization (multi-stage mixed-integer pramgr
solved with a modified tabu search) to make denssio
regarding the routing between the different terdsindn
order to realize this relationship, the optimizatis typically
embedded within the simulation model.
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Panel (b) of Figure 1 also illustrates a relatigmshhere a
simulation model utilizes an optimization model,t bhe
relationship is non-recursive. In this case, a &ton model
is used to test the results of an optimization rhoeg., a
schedule. Wang and Regan (2008) propose two tirseeba
algorithms for the inbound truck scheduling probléma
crossdock, evaluated with a detailed simulation ehotiu
and Takakuwa (2010) test the inbound truck schealudethe
employees’ schedule in a fresh-food crossdock dipara
using a simulation model. Deshpande et al. (20059 u
discrete-event simulation to evaluate the perfoaanof
various heuristics for the problem of assigningksito the
different doors of a crossdocking platform.

The relationship in Panel (c) of Figure 1 is retugwith an
optimization model utilizing a simulation model. this case,
a simulation model is typically embedded within an
optimization model and the simulation is used talgate the
objective function associated with a solution atai from
the optimization model. Olafsson and Kim (2002) vide
tutorials for this technique, which they refer ®"aimulation
optimization.” Greenwood et al. (2005) describe edding
simulation and optimization models in a decisiompsurt
system to improve shipbuilding operations. In thgidtics
field, Aickelin and Adewunmi (2006) ussimulation as a
black box to evaluate the objective function wittdnmeta-
heuristic for the cross docktruck-to-door assignmet
problem. In a different approach, Almeder and aD0Q)
translate the solution of the optimization modebidecision
rules for the discrete-event simulation, and appihe
procedure iteratively until a stable point is readth
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Figure 1: Complementary uses of simulation and
optimization models
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In Panel (d) of Figure 1, the relationship is #eaursive :
simulation models generate data that are then usedn
optimization model. For example, to address a personnel
planning problem at a crossgking center, Liu and
Takakuwa (2009) use a simulation model to deterntige
workload needed. These data are inputs for an énteg
programming model which produces an optimal scheton

the operators, taking their skills into account. dnother
example, Hauser (2002) uses a simulation modetdwige
data on alternative layouts in a manufacturing fplan

The focus of this paper is on the non-recursivati@hship
where a simulation model utilizes an optimizatioadal, as
illustrated in Panel (b) of Figure 1. Based on experience
with developing and testing simulation and optirtizza
models that interact in this manner, we detail explain the
modeling issues raised by such a relationship. W#aa
how those issues can be solved or circumvented goheis
to provide the modeling community with useful i on
this application of simulation and optimization and
encourage and further enable the use of discreistev
simulation models as a means to assess the perfoert
optimization models.

Discrete mathematical programming optimization (DB)P
models can represent systems in a very realisti; t@&ing
into account as many details as the simulation ;do@sever,
adding too many details makes the solution non-cdaige.
Assumptions are often made in order to simplify the
optimization model and focus on the most saliepeeats. A
discrete-event simulation (DES) model can be used t
validate those assumptions and to determine thedidity
range. On the other hand, some simplifications mamade

in the DES model in order to closely follow the waptions
made in the DMPO model. This is important in order
validate those assumptions.

To validate a model is to determine whether or ihd$ a

meaningful and “accurate” representation of the sgatem,

and contains sufficient accuracy to meet its inéehdse. It is
about “building the right model.” Verification isi¢ process
of determining whether a model is working as intghdlt is

about “building the model right.”

In order to validate and verify the DES model, erpects it
to behave similar to the DMPO model under deterstimi
conditions. In a second step, the DES model willused
under realistic, stochastic conditions in orderasess the
performance and robustness of the DMPO scheduleis. T

Outputs of the DMPO model

Inbound trucks schedules ‘ ‘ Detailed pallet moves ‘ ‘ Outbound trucks schedules

Aurival Departure

Details per pallet Transfer capacity Aival Departure

DES model

Figure 2: Case 1 - DES flow diagram, links with BigPO model

paper describes how, due to differences in the e
approaches, disparities can occur even in the ftsp
(validation and verification), when the models developed

to represent the same system in the same operating
environment. The examples on which our observatemes
based come from the logistics domain (crossdocking
operations), but we believe they can be relevard twide
variety of problem domains. In addition to desaripithe
issues, we offer suggestions on how modelers naddtess
and solve them. Therefore, this article seeks lp modelers

in the use of discrete-event simulation to assdss t
performance of mathematical optimization models.

BASESFOR IDENTIFYING MODELING ISSUES

The modeling issues defined in this paper are #selr of
testing, using discrete-event simulation, two ofation
models for robustness under operational condititimes
differ from those explicitly considered in the mexhatical
formulation, e.g., operating in a stochastic envinent.

In the first case (referred later as “Case 1")f sehedules
are obtained using the DMPO program described utidra
and Alpan (2014). A schedule is generated for imploand
outbound trucks to a crossdocking facility that mazes
transportation providers' satisfaction (in terms tife
closeness to their desired arrival and departunedj and
minimizes total quantity of items placed in tempgrstorage
(rather than being directly loaded onto an outbotrndk).
The obtained schedule gives the exact arrival aghdure
time of the inbound and outbound trucks, as welltlees
detailed pallet moves inside the platform. A kegumsption
in the optimization model is that unloading, scagni
transfer, loading and departure operations carbaldone
within the same time period (e.g., 60 minuteshéd inbound
truck and the outbound trucks are both presentt iEhdhe
time period is long enough to ensure pallets can be
transferred to storage, or to their outbound trucknasked
time. The transfer capacity inside the platforne.(i.the
quantity of pallets that can be moved at each fiexeod) is
limited. Also, the distance of the transfer (thius bocation of
the doors) is not taken into account. We referititerested
reader to Ladier and Alpan (2014) for more detalisut the
DMPO model and assumptions.

A DES model is used to test the schedules’ robsstméen
subjected to various levels of randomness, e.gly ea late
truck arrivals (modeled with exponential distrilmuts),
variations in process times (unloading and transferdeled
using triangular distributions). Figure 2 showsimpified

flow diagram of the DES model. The diagram ideesfihe

Resources and
qualifications

Truck arrival time,
departure time, content

j y J
Variability

DMPO model

Schedule of tasks by time and resource
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Figure 3: Case 2 — Links between DMPO and DES nsodel
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sources of information from the DMPO model that ased
by the DES and the sources of variability whichyide the
stochastic environment for the test.

Case 2 takes place in the same platform, but tbesfn on
the employees rather than the trucks. The truckdide and
truck door assignments are inputs of the problerastT
schedules are generated using the DMPO model Besciri
Ladier et al. (2013), which uses three mixed-intelgesar
programs solved in sequence. The sequential solutio
processes results in detailed timetables (with irhste
precision) for the employees of the logistics facilThe task
assignments have to cover all of the workload foe day,
while taking into account the employees’ competenddy
assigning each of them to tasks for which they raast
proficient. More details on the assumptions andsibl@tion
methods can be found in Ladier et al. (2013).

A DES model is used to test the robustness ofithetables
generated by the DMPO, when subjected to randoniness
the amount of workload. In this DES model, the vesskare
therefore explicitly represented, with their ownpasities
and their respective competencies. Figure 3 shoeidinks
between the DMPO and the DES model in Case 2.

Both simulation models were developed using thaukition
software FlexSIim© (www.flexsim.com). Although both
models address crossdocking scheduling problems, we
believe that the issues raised in the next sectamsnot
unique to logistics or crossdocking, and can beoentered

in other modelers application domains.

FOUNDATIONAL DIFFERENCES

The first set of dissimilarities between DMPO and&E®
models include foundational differences in the wtnes two
modeling approaches represent the underlying systéese
differences are described in terms of time reprasiem,
spatial representation, model structure, and msidel

Timerepresentation

How the passage of time is represented in modeistitotes

a major difference between DMPO and DES. Temporal
DMPO uses discrete time intervals where events and
resulting activities occur within a time period.rFexample,
within a one-hour time interval a truck arrives forloading

or a task is assigned to, and completed by, aname! All
that is considered is that these events/activitiesur
somewhere within the interval; the exact time ist no
important to the model. However, DES has a muckrfin
granularity, events occur at precise instancesnud;te.g., a
truck arrives 27.1752 minutes after the arrivathaf previous
truck. Also, in simulation, events trigger, and #niggered
by, other events; therefore, timing is an imporelement.

Because of these key differences, the behavior BM&@PO
model using discrete time intervals and the behawfoa
DES model will rarely be matched exactly. In Caseht
DMPO model only allows a truck to leave at a mugipf
the time interval considered, e.g. 60 minutes, vtiie trucks

in the DES model leave when a specified conditomet,

e.g., when a truck is empty (inbound) or full (cuibd).

Therefore, if we compare the truck departure tinaess
calculated by the DMPO model and as observed irDE8

model, we incur time differences as large as 5Qtameven
though both models behave as expected. Those atiffes
can be reduced by shortening the time intervalsl uise¢he

optimization model; however, that makes the optatian

model more complex (and possibly incomputable) some
differences will always be observed. One way teuwinvent
this issue is to measure performance in termstefuals. For
example, assuming the masked time is 60 minutethén
optimization model, then if a departure is planaéd7:00 in
the optimization model and if the truck departsl@tll in

the simulation model, then the truck departureoisstdered
“on time” and there is no difference in the modedults.

Modelers should therefore be aware of the diffeesnin
granularity of the modeling approaches and they can
circumvent this issue by using time intervals rathigan
absolute time for their simulation measures.

Spatial representation

DES models not only consider events in time, thégmno
consider spatial relationships among modeling etesnand
the effects these relationships have on systemvimhand

performance. Most simulation software integrate andble
the use of locational data to determine activityets; e.g.,
each travel time in a DES model may be based ooufrent

location of a transporting resource, its destimds® speeds
and possibly acceleration, etc. This granularitpas always
considered in optimization formulations.

DMPO models can take into account speed and aetieler
— but this adds considerably to model complexityerEfore,
there is a tradeoff between fidelity in the optiatian model
(zero travel times) and closeness to realistic ajgmrs. As a
result, spatial effects are taken into accountMHAD models
only if they significantly impact the key perfornan
measures that are used in decision making. For gearthe
selection of an alternative may be heavily influsshdy the
distance walked by employees in a crossdock facilit
spatial considerations are not at the core of thelpm, then
mathematical programming modelers tend to ignoawelr
time or use masked time in order to simplify théimjzation
models. An action time that is “short enough” cae b
considered as instantaneous, i.e., performed withi@
formulated time interval (Case 1).

The difference that DES models typically consider $patial
aspects of systems being modeled, and DMPO forinakat
do not, causes cross-model validation challengesnifigate
this issue we propose a compromise approach: dothteo
transfer time by making it a process step in timeutation
that does not consider distances and speeds. Hsity e
permits setting the transfer time to zero so thatan be
compared to the mathematical programming model, yet
enables an easy extension to the simulation modaider to
incorporate more realistic aspects, such as prbtyabi
distributions and location/speed considerations.
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M odel structure and size

Model complexity is often defined by the model stuue

and its size. DES models and DMPO models defineeinod

structure and size quite differently.

In DMPO, size is not of special concern in formingtor
describing a model since the constraints are spdcih a

tight mathematical notation and input parameterg ar

provided in a structured manner. However, the size
theoretical complexity of the problem drives theoice of
solution method, and therefore the solution acguraed
speed. Optimal solutions may be found, but if thebfem is
NP-hard, execution time increases exponentiallyh vitie
problem size. On the other hand, heuristics dognarantee
optimality, thus affect accuracy, but can be easilgled and
provide solutions for big data sets.

In DES, model size is defined only partially inrter of the

number of objects considered (number of processits,u
number of workers, etc.). The model structure atersi the
types of objects used and, more importantly, thaber and

type of relationships among the objects. Size, #mabs

complexity, is heavily dependent upon structure and
particular the number and type of relationshipserevf a

DES model has been designed to be easily scaldiie,
relationships among objects makes scalability isthcases a
significant challenge - it is necessary to chamgestructure
in order to change the size. In contrast to the DMRodels,

the complexity of a DES model does not affect theice of

solution method and only slightly impacts solutapeed (the
model run time increases linearly with the probkne).

Typically, models are verified, at least initiallysing small
size and structure, typically few objects, few tiperiods, or
both. However, it may be necessary to test modhelarger
contexts. For example, Case 1 was validated fapnssdock
facility model with 3-input doors and 3-output dspbut a
realistic case would be a 50-input doors by 50-gltfpors
arrangement. Since it may be difficult to scale the
structure of simulation models, and since changihg
optimization solution method requires considerakelsearch
and development, it is important to specify theesarly on
in the project.

OPERATIONAL DIFFERENCES

The second set of dissimilarities between DMPO Bt
include operational differences in modeling the enhdng
system. These differences are described in term&ask
dependencies, resource assignment and process logic

Task dependencies

Precedence relationships are used to define ther drd

which tasks occur. For DMPO models, if the ordenas a

key consideration, it will typically not be includein the

model for the sake of simplification and computatione. In

that case only the number of tasks happening inmme t
interval will be considered; the order, the batide sand the
parallelism of the tasks are not taken into account

However, in DES modeling, processing order is ieher
typically, unless explicitly specified, tasks armeeeuted in
first in, first out order. This fundamental diffexee can lead
to discrepancies between the models during vatidati-or
example, consider a single-channel process {) working
at a rater and a multi-channel process withchannels and
rate r/c per channel The output from the two options
appear to be the same — they are on the averagmayu
not be true within a time interval. We use the gtall
transfer process from Case 1 as an illustratiorsufe
the transfer rate per resource s 10 pallets/hour and the
number of available resourcesds= 3. If an outbound
truck arrives at 10:00, then any pallet transferfiexin
inbound before that time goes to storage, while @adiet
processed after 10:00 goes directly into the outdou
truck. A process with capacity= 1 and rate per channel
of r = 30 pallets/hour transfers each pallet in 2 minutes.
Therefore, between 9:55 and 10:00, two palletpeveessed
and they both go into storage. However, a procesis w
capacityc = 3 and rate per channel of= 10 pallets/hour
transfers each pallet in 6 minutes. Therefore, betw9:55
and 10:00, no pallet is fully transferred and ndlgbagoes
into storage.

Modelers need to be aware of how basic processidgro
batch size and precedence relationships are haimledch
type of model. Typically, this is implicit in DESadels and
explicit, and often ignored, in DMPO models.

Resour ce assignment

The basic manner in which resources are selectedide
may differ between DMPO models and DES models, thus
leading to discrepancies in results and validatiballenges.
A common application of mathematical programminglaie
is to make assignments between resources and t@sks,
our Case 2. When DES is used to test the implertientaf
an assignment, the default simulation logic mayrestlt in
comparable results. For example, in a simulatioa ifask
needs to be performed by a resource and seve@lroes
are available, a default first-in, first-out crigermay not
match the optimized assignment. Therefore, infoionabn
the DMPO assignments must be provided to the DE&eino
so that the task can select the appropriate resourc
addition, if none of the available resources resulh match
with the optimized assignment, then logic must bevided
in the DES model in order to guide the task’s dedacfrom
the available resources; or, the task must waitl uhe
appropriate resource is available.

Similarly, in a DES model if a resource becomesilalite
and there are multiple tasks that need to be cdethlea
default first-in, first-out criteria may not matte optimized
assignment. Therefore, as indicated above, infoomabdn
the DMPO assignments must be provided to the siioula
so the resource can select the appropriate tagiddition, if
none of the tasks result in a match with the ozEdi
assignment, then logic must be provided in the Die8el in
order to guide the resource’s selection of thelabkd task;
or, the resource must be made idle and wait umiil a
appropriate task becomes available.
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In short, modelers need to address ways to incatpor
DMPO results into DES models, typically by modifyin
default resource assignment logic inherent in tmeilsition.

Processlogic

By its nature, DES is greedy, i.e., it processdsitams
(pallets in our cases) that are scheduled in antdirstance
in time), while DMPO models can transfer less pallper
time period if it improves the objective function ithe
optimization. In our Case 1, in order to force Hmulation
model to obtain a result similar to the optimizatimodel,
the amount of pallets that can flow through the etatiiring

each time period needs to be limited. This can be

accomplished by directly using the output of the BPM
model as input to the DES, i.e., the capacity ef titansfer
process in the simulation model. Of course, thgaciy will
need to vary over time. It is interesting to notattthis
adjustment may make the simulation closer to nealit
Therefore, the process logic issue can be mitigayealdding
logic to the simulation model that provides flexitdapacity
over time to the activity.

Since DES is event-driven, priorities are oftenuiegd in
order to represent the appropriate behavior. Famgke, if
both an inbound truck needs to be unloaded andittoond
truck needs to be loaded, which should an availegdeurce
service first? In Case 1 and Case 2 we includegsotogic
in the DES model to push items from inbound truakd pull
resources from the arriving outbound truck. Thelipgl
algorithm gives the priority to the outbound trucksus, we
first seek to fill the outbound trucks that havddave rather
than emptying the inbound trucks. This logic is iEimto

what a manager would do. However, it may not agvitk

the optimal solution given by the DMPO model inckes.

Therefore, it is important to note that, when tegth DMPO

model with a DES model, the former gives the optima

solution (when exact solution methods are used)ewttie
latter does not. While the simulation can be drit@mards a
solution closer to the optimal, it cannot deterntime optimal
solution unless it embeds an optimization moduiés (is the
case (a) in Figure 1, and beyond the scope ofpapr).
Using the optimal solution determined by the DMP Odel
as an input in the DES model is a good approach thau

simulation model needs to include decision logia fo

handling changes due to stochastic events.
CONCLUSIONS

DES and DMPO modeling take very different approacioe
address operations problems. Of course this is ttue
fundamental differences in the way the two typesnoflels

are structured and solved. Even though quite differ
simulation and optimization are often used in cam@ntary

roles to improve the decisions that result fromngsthe

models. These inherent differences provide chadentp

modelers, especially in validation and verification

This paper is based on the cases of two simulatiodels
that are used to evaluate the performance of DMRPOels
(integer programming, mixed integer linear progranghin
a stochastic environment. Those application casedem
crossdocking problems, but the issues we pointantoccur
regardless of the application field. We describeesa key
challenges occurring when the simulation modelshavbe
validated, i.e., when the behavior of the simulatinodel
and the optimization model are compared under ohixéstic
conditions. We offer suggestions for mitigating gho
challenges.

We hope that the insights given on these issuesdmwill
encourage an increase in the use of DES to ashess t
performance of DMPO models. We also hope that other
modelers encountering various modeling issues Wl
encouraged to communicate them so that the comynciait
benefit from their experience.
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