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Abstract—In a cross-docking platform, goods are unloaded,
transferred and reloaded into trucks with little or no storage
in between. The crossdock truck scheduling problem addresses
the hard problem of coordinating the truck operations. However,
crossdock operations are mostly done manually: it is therefore
important to take staffing issues into account while building the
truck schedule. This article shows how a truck scheduling model
and an employee timetabling and rostering model can be com-
bined to address both problems in an integrated manner. Three
approaches are compared. The sequential approach consists in
sequentially solving the two problems: from the truck schedule
calculated first, a workload is deduced and used as input for
the employee timetabling and rostering process. The iterative
approach consists in solving both problems one after another in
an iterative manner until a stable point is reached. Two iterative
procedures are proposed, employees-first and trucks-first.

I. INTRODUCTION

Cross-docking is a technique used in logistic platforms
(also called crossdocks) to accelerate the flow of goods while
minimizing storage. Each truck arriving at the platform (in-
bound truck) contains products aimed at different destinations
or clients. The cross-docking process consists in unloading
the products from the inbound truck, sorting them by clients,
then transferring and loading them to outbound trucks – each
outbound truck being related to a specific client.

To operate properly, a cross-docking platform requires a
very good coordination between inbound and outbound trucks.
The crossdock truck scheduling problem handles this problem
and also makes decisions on the transfer of goods inside the
platform.

Goods can be moved inside the cross-docking platform
either manually, with an automated system (e. g. conveyor
belts) or with a combination of both. Automation can also
be used for storage (automated storage and retrieval systems)
– see e. g. Baker and Halim [1] or Granlund [2]. Note that
these systems support human’s work but do not replace it. In
general, automated systems represent heavy investments, but
are feared to be not flexible enough to meet changing market
requirements [1]. Therefore, automation is generally adopted
by companies dealing with a limited range of product types,
in a stable or growing market (e. g. postal and parcel services).
For logistic service providers, whose survival depends on their
flexibility, the operations stay mainly manual. Manpower is
therefore the first cost center in logistics and especially for
logistics providers (see Graham [3] and van den Berg [4]).

It is thus crucial to stick to the activity volume when
dimensioning the task force; yet this activity volume depends
directly on the truck schedule. Platform managers handle this
issue by creating a truck schedule first, and then creating an
employee timetable and an employee roster1 in order to cover
the resulting workload. The underlying idea is to organize
first the operations involving external stakeholders (the trans-
portation providers operating the trucks), and to organize the
internal matters as a second step.

This sequential approach, however, might not be the best
way to solve this problem, since truck scheduling and em-
ployee rostering are strongly intertwined. As noted by Van
Belle et al. [6], “the scheduling of the trucks heavily influences
the workload for the internal resources”. Taking staffing issues
into account when creating the truck schedule might therefore
lead to better solutions. Indeed, as noted by Maravelias and
Sung [7]:

“To achieve globally optimal solutions, the interde-
pendencies between the different planning functions
should be taken into account, and planning decisions
should be made simultaneously. In other words,
planning problems should be integrated”.

However, the crossdock truck scheduling problem and
the employee rostering problem are both complex. In cross-
docking literature, resource constraints are not often taken
into account (Ladier [8]), let alone detailed timetabling issues.
However, the crossdock truck scheduling problem, that consists
of scheduling the trucks only, is covered by many authors listed
in the state-of-the art established by Van Belle et al. [6] – see
e. g. Fazel Zarandi et al. [9]. On the other hand, the employee
timetabling problem is widely developed for different fields
of application (nurse rostering, crew scheduling. . . ); but in the
logistics field, that requires specific constraints regarding the
workload variation and the very diverse employee qualifica-
tions, it is only covered by Günther and Nissen [10, 11] and
Ladier et al. [12].

Integrating the two problems including all realistic
business-oriented constraints would result in a model way too
complex to solve. We therefore propose to use an iterative
approach instead, that runs the two different models iteratively
until a stable point is reached.

1Rostering is “the placing, subject to constraints, of resources into slots in
a pattern. One may seek to minimize some objective, or simply to obtain a
feasible allocation. Often the resources will rotate through a roster”. Wren [5]



The rest of the article is organized as follows. A review
of the literature regarding the integration of truck scheduling
and employee timetabling can be found in section II. The
two models that are to be integrated, namely the crossdock
truck scheduling model and the employee timetabling and
rostering model, are presented in section III. A simple se-
quential approach that mimic the decision process usually
used by platform managers is described in section IV in
order to have a comparison reference when evaluating the
iterative approaches described in section V; two different iter-
ative strategies (employees-first and trucks-first) are detailed.
Numerical experiments are conducted in section VI before
giving concluding remarks in section VII.

II. LITERATURE REVIEW

The crossdock truck scheduling problem and the employee
rostering problem are solved separately in the literature (see
details in section III) but the two aspects are rarely integrated.
Only Ko et al. [13] integrate “fairness” when solving a truck-
to-door assignment problem: their objective is to minimize
both the number of workers engaged in loading operation and
the imbalance ratio among the workers. They use a genetic
algorithm approach with a line balancing heuristic. Li et al.
[14] are the only ones who attempted a totally integrated
approach: they propose an Excel tool (the exact functioning
of which is not really provided) to conduct the operations
planning, sequencing, real-time scheduling for container ar-
rivals and pallet transfer, and real-time resource management.
Although the detailed models are not given in the article, their
approach seems to be based on greedy heuristics.

It is necessary to turn to different fields to find examples
of combined operations planning and employee timetabling
using exact methods: production planning on the one hand, and
vehicle and crew scheduling on the other hand. Artigues et al.
[15] give a review of articles dealing with the integration of
task and employee scheduling in both application fields. Since
the publication of his state-of-the-art in 2007, more recent work
has been done on the topic. Artigues et al. [16] use a hybrid
branch-and-bound to solve an integrated employee timetabling
and job-shop scheduling problem. Working on two comparable
problems, Guyon et al. [17, 18] propose to use a Benders
decomposition, a specific decomposition with cut generation,
and a hybridization of a cut generation process with a branch
and bound strategy. In the transportation field, Mercier and
Soumis [19] propose an integrated model for aircraft routing,
crew scheduling and flight retiming, solved with a Benders
decomposition method. Alternatively, Weide et al. [20] propose
to solve the two models (aircraft routing and crew scheduling)
in an iterative way. Traditionally, the routing problem is solved
prior to the crew scheduling problem; but the authors note that
this procedure might cause some crews to have a very short
amount of time to transfer from one aircraft to another, which
is likely to propagate delays. By solving both models in an
integrated way, they aim at increasing the overall robustness
of the operations.

“We start with a minimal cost crew pairing solution
without taking aircraft routings into account. Then,
in each iteration we solve the individual aircraft
routing problem first, taking into account the current

crew pairing solution. Then, given the aircraft rout-
ing solution we resolve the crew pairing problem. We
only use the objective functions in both problems to
pass information from the problem solved previously
to generate more and more robust solutions. [. . . ] We
stop the process when the level of robustness cannot
be improved any further”. Weide et al. [20]

In this article, we propose to apply a procedure comparable
to the one used by Weide et al. [20] in order to connect a truck
scheduling model and an employee timetabling and rostering
model, both of which are detailed in the next section.

III. PRESENTATION OF THE INITIAL MODELS

The objective of this article is to show how a truck
scheduling model and an employee rostering model can be
connected in order to create platform schedules of better
quality than what the manager would obtain manually with a
sequential process. Therefore, instead of writing new models
for each sub-problem, we reuse models already present in the
literature. This section introduces them both.

A. Crossdock truck scheduling

Ladier and Alpan [21] propose a crossdock truck schedul-
ing model with time windows, in which the transportation
providers express in advance their preferences regarding the
time at which the trucks arrive at and leave from the platform.
The objective is therefore to minimize the quantity of items
going through storage instead of transferring directly, and also
to minimize the dissatisfaction of the transportation providers
regarding the time window each truck is allocated to. Figure 1
provides a quick list and description of the data and variables
used in the model; Figure 2 shows the full integer program.
For detailed explanations, we refer the reader to Ladier and
Alpan [21].

The objective Π0 is a weighted sum of objectives: Πα
0 and

Πβ
0 evaluate the dissatisfaction of the transportation providers

for the inbound trucks and the outbound trucks, respectively;
Πγ

0 is the total number of pallets transiting through storage.
The number of trucks docked cannot exceed the number of
doors (constraints 4-5); a pallet moves from/to a truck only
when the truck is present (constraints 6-7). Constraint (8)
models the content of an inbound truck, and constraint (9) the
correct loading of an outbound truck. Constraint (11) limits the
capacity of the platform (number of pallet transiting through
at every time period). Only one time window is assigned per
truck (constraint 12). Finally, constraints (13-14) calculate the
number of pallets put in storage.

Because the problem is NP-hard in the strong sense and
cannot be computed for instances of realistic sizes, Ladier
and Alpan [21] propose three different heuristics, that perform
differently depending on the instance size and the relative
weights of the objective elements. In this article, we will use
heuristic H2 as it performs well for any medium-sized instance.
This heuristic uses a decomposition of the problem, solving
separately the outbound side first before solving a version of
the integer program restricted to the inbound side.

Thus in the remaining of the article, when referring to
the “truck scheduling model”, we mean the integer program



Definition sets:
H planning horizon;
I set of inbound trucks;
O set of outbound trucks;
C set of clients to whom the

pallets should be deliv-
ered;

Ki set of possible presence slots
of the truck i ∈ I;

Ko set of possible presence slots
of the truck o ∈ O.

Decision variables:
xhio amount of pallets transferred

from inbound truck i ∈
I to outbound truck o ∈
O at time period h ∈ H;

wIik =1 if slot k ∈ Ki is chosen
for truck i ∈ I, 0 other-
wise;

wOok =1 if slot k ∈ Ko is cho-
sen for truck o ∈ O, 0
otherwise;

sIhic number of pallets for client
c ∈ C going from truck
i ∈ I to the storage lo-
cation at time period h ∈
H;

sOho number of pallets going from
the storage location to
truck o ∈ O at time
period h ∈ H;

shc number of pallets for client c
stored at time period h.

Data:
Qic number of pallets for client

c ∈ C in truck i ∈ I;
Zco = 1 if truck o ∈ O is for

client c ∈ C, 0 other-
wise;

NI number of inbound doors;
NO number of outbound doors;
M maximum number of pallets

that can be moved during
one time period inside the
platform;

F number of pallets to fully
load one outbound truck;

W I
ikh = 1 if hour h ∈ H is in slot

k ∈ Ki for truck i ∈ I;
WO
okh = 1 if hour h ∈ H is in

slot k ∈ Ko for truck
o ∈ O.

Penalties:
P Iik penalty paid for using slot

k ∈ Ki for truck i ∈
I, if k is outside the
wished time window ex-
pressed by the transporta-
tion provider;

POok penalty paid for using slot
k ∈ Ko for truck o ∈
O.

Source: Ladier and Alpan [21]

Fig. 1: Truck scheduling model data and variables
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Source: Ladier and Alpan [21]

Fig. 2: Truck scheduling model

proposed by Ladier and Alpan [21] for small instances, and
heuristic H2 (also proposed by Ladier and Alpan [21]) for
bigger ones.

B. Employee timetabling and rostering

Constraints for scheduling and rostering are numerous: lo-
gistic employees are multi-skilled employees and have flexible
working hours or short-term contracts. Legal constraints and
handling equipments’ capacities should also be met. Ladier

min Π3 = α3Πα3 + β3Πβ3

s.t. Πα3 =
∑
e∈E′′,s∈S

∣∣Y ′′es − y′′es∣∣ (15)

Πβ3 =
∑
e∈E′′,t∈T ,q∈Q

∣∣∣X′′etq − x′′etq∣∣∣ (16)∑
e∈E′′ x

′′
et1q

= W 1
t1q

∀t ∈ T 1, q ∈ Q (17)∑
e∈E′′,q∈Q St2qx

′′
et2q

= W 2
t2

∀t ∈ T 2 (18)
x′′etq ≤ Xetq ∀e ∈ E′′, t ∈ T , q ∈ Q (19)
x′′etq =

∑
s∈S Zsqy

′′
es ∀e ∈ E′′, t ∈ T , q ∈ Q (20)∑

t∈T x
′′
etq ≤ 1 ∀e ∈ E′′, q ∈ Q (21)∑

s∈S y
′′
es ≤ 1 ∀e ∈ E′′ (22)

x′′etq, y
′′
es ∈ {0, 1} ∀e ∈ E′′, t ∈ T , q ∈ Q

Πα3 ,Π
β
3 ,Π

γ
3 ,Π

δ
3 ∈ R+

Source: Ladier et al. [12]

Fig. 3: Employee rostering model

et al. [12] propose a model supporting the chain of decisions
from weekly timetabling to daily rostering (detailed task
allocation). The problem is divided into three sub-problems
depending on the type of decision to be made: the weekly
timetabling step consists in workforce dimensioning and task
allocation for a week, and the second step is the detailed daily
rostering. The three levels of decisions are made sequentially;
each is modeled as a mixed integer linear program. Figure 4
gives an overview of the main inputs and outputs of the
weekly timetabling and daily rostering models. Because they
are solved sequentially, the outputs of the weekly timetabling
step are reused as inputs to build the daily roster. The integer
program modeling the daily rostering step is given in Figure 3,
because the details of this steps are used in the remaining
of this article. For more detailed explanations regarding the
model2, data and assumptions, we refer the reader to Ladier
et al. [12].

Constraints (15) and (16) define the penalties given if a
shift changes compared to the output of step 1 (Πα

3 ), and if a
task changes compared to the output of step 1 (Πβ

3 ). Constraint
sets (17) and (18) match the workers to the workload, for
the tasks from T 1 defined per hour and for the tasks from
T 2 defined by slots, respectively. Constraint set (19) checks
that the tasks are allocated to the employees only when it is
possible. Finally, constraint sets (21) and (22) ensure that each
employee has no more than one shift per day, and one task per
interval.

Although each of the three subproblems is NP-hard in the
strong sense (Ladier [8]), the numerical experiments carried
out by Ladier et al. [12] demonstrate that the mixed integer
linear programs for the weekly timetabling and daily rostering
can be solved in a fast manner for real size problems.

The models detailed above are closely linked to each other:
the platform capacity data M used in the truck scheduling
model depends on the employee roster, while the workloads
W , W 1, W 2 used in the weekly timetabling and rostering
models clearly depend on the truck schedule. Because of the
high number of variables and parameters, and the problems
complexity, a mathematical model for the integrated problem
is hardly usable in an industrial context. Instead, we propose
to use a sequential and an iterative approach.

2especially the weekly timetabling model, not displayed here for the sake
of brevity.



Definition sets:
E set of regular employees
E′ set of employees including the

temporary workers hired
for the week

E′′ set of employees including the
temporary workers hired
for the day considered

T set of tasks, split into two sub-
sets:
T 1, tasks whose work-
load is defined hour per
hour.
T 2, tasks whose work-
load is defined for a
whole slot or time win-
dow.

P set of available temporary
workers profiles.

D set of working days considered
for the weekly schedule.

H set of working hours in a day.
S set of possible shifts, for exam-

ple “8AM–4PM”.
Q set of intervals considered for

the daily rostering, e. g. a
quarter of an hour.

Weekly timetabling data:
X′edt Data matrix indicating whether

task t can be done by
employee e ∈ E on day
d ∈ D.

Qet Qualifications, or level of ex-
perience of employee e ∈
E for task t ∈ T , defined
on {0..ζ} where ζ ∈
N∗.

Ppt = 1 if a worker with profile
p ∈ P is qualified for
task t, 0 otherwise.

Cp Cost of hiring a worker with
profile p ∈ P .

Wtd Workload for task t ∈ T and
day d ∈ D.

W 1
tdh Workload for task t ∈ T 1

defined on a precise time
window, hour h ∈ H and
day d ∈ D.

W 2
td Workload for task t ∈ T 2

defined on a slot, for day

d ∈ D.
Sthd Slot description: Sthd = 1 if

task t ∈ T 2 can be done
on hour h ∈ H and day
d ∈ D, 0 otherwise.

Zsh = 1 if hour h ∈ H is in shift
s ∈ S, 0 otherwise.

Ds length of shift s ∈ S, in hours.

Weekly timetabling outputs:
x′etdh Percentage of time spent on

task t ∈ T by employee
e ∈ E′ on day d ∈ D
and hour h ∈ H.

y′eds Shift allocation: y′eds = 1
if employee e ∈ E′ is
allocated to shift s ∈ S
on day d ∈ D.

Daily rostering input data:
X′′etq Task allocation as calculated

by step 1. X′′etq = 1

if employee e ∈ E′′ is
present on time interval
q ∈ Q, able to do task
t ∈ T , and if task t can
be done on interval q; 0
otherwise.

Y ′′es Shift allocation as calculated
by step 1.

W 1
tq Workload for task t ∈ T 1

defined per interval, for
time interval q ∈ Q.

W 2
t Workload of the considered

day for the task t ∈ T 2

defined per slot.
Stq Slot description: Stq = 1 if

task t ∈ T 2 can be done
during interval q ∈ Q, 0
otherwise.

Daily rostering outputs:
y′′es Shift allocation: y′′es = 1 if

employee e ∈ E′′ is
allocated on shift s ∈ S,
0 otherwise.

x′′etq Task allocation: x′′etq = 1 if
employee e ∈ E′′ works
on task t ∈ T during
interval q ∈ Q, 0 oth-
erwise.

Source: Ladier et al. [12]

Fig. 4: Weekly timetabling/rostering data and variables

IV. SEQUENTIAL APPROACH

The sequential approach is the “intuitive” one, which
could be used by a manager who has at his disposal both
a truck scheduling tool and a weekly timetabling and daily
rostering tool based on the models described in section III.
It is therefore the approach more commonly used in industry.
The general idea is to deal first with the external stakeholders
(transportation providers) by creating the truck schedule, and
then to sort out the internal issues by creating the employee
timetable and roster.

The employee timetabling and rostering models need a
workload as input, workload which is directly linked to the
truck schedule. Yet the truck schedule is difficult to obtain in
a cross-docking platform; hence it would be natural to firstly
run the truck scheduling model for each day of the week. The
workload for the week (W ) can then be deduced from the
truck schedules (see the detailed procedure below) and used
as input to run the weekly step of the timetabling process, using

the model proposed by Ladier et al. [12]. The daily roster is
created every morning, using the workload deduced from the
truck schedule of the day, and the timetable already created
for the week. The employee rostering model thus creates a
schedule that matches the workload and does not differ too
much from the weekly schedule (X ′′, Y ′′). The process is
summarized in Figure 5.

Instance

Truck schedule

W 1

Weekly timetable

W 1

X′′, Y ′′
Daily roster

Fig. 5: Principle of the sequential approach

a) Deducing workload W 1 from the truck schedule:
Among the outputs of the truck scheduling model are xhio,
which gives the number of pallets moving directly from truck
i to truck o within time unit h; sIhic which denotes the moves
from truck i to storage at time h (for each client c) and sOho
which gives the number of pallets transferred from storage to
truck o at time h. Using these three outputs, the workload can
be expressed precisely, hour by hour: all tasks therefore belong
to set T 1. The workload is defined as follows for all h ∈ H:

Unloading W 1
0dh = ST 0(

∑
i∈I,o∈O

xhio +
∑

i∈I,c∈C
sIhic)

Control and scan W 1
1dh = ST 1(

∑
i∈I,o∈O

xhio +
∑

i∈I,c∈C
sIhic)

Direct transfer W 1
2dh = ST 2

∑
i∈I,o∈O

xhio

Transfer to stock W 1
3dh = ST 3

∑
i∈I,c∈C

sIhic

Transfer from stock W 1
4dh = ST 4

∑
o∈O

sOho

Loading W 1
5dh = ST 5(

∑
o∈O

sOho +
∑

i∈I,o∈O
xhio)

b) Deriving the daily roster from the weekly timetable:
This step is done exactly as described in section III. The
decisions taken at the weekly timetabling steps are used as
input data (X ′′, Y ′′) in the rostering step.

V. ITERATIVE APPROACHES

The sequential approach described in the previous section
does not guarantee global optimality. Although the employee
timetable and roster match the previously calculated truck
schedule, maybe a better solution could be reached if the truck
schedule was calculated taking staffing issues into account.
We therefore apply an approach similar to the one described
by Weide et al. [20] to our problem. The truck schedule and
the employee roster are run iteratively until a stable point
is reached. Two different cases are studied: starting with the
calculation of the employee timetable and roster (employees-
first) and starting with the truck schedule (trucks-first). Both
principles are described in Figure 6 and further detailed in the
following sections.



Instance

W 2, S(1)

Weekly timetable

Mh, N
I
h , N

O
h

(2)
X′′, Y ′′

(3) Truck schedule

W 1
(4)

(5)Daily roster(6)

(a) Employees first

Instance

Truck schedule

W 1

Weekly timetable

X′′, Y ′′

Daily roster

Mh, N
I
h , N

O
h

Truck schedule

W 1

(b) Trucks first

Fig. 6: Principle of the iterative approaches

A. Employees-first

This solution considers the timescale of the different deci-
sions to be made and therefore calculates first the employees
weekly timetabling; the working days and the starting and
ending time of each employee on each day is communicated
to the employees one week in advance. In the following we
detail the steps to follow in the employee-first procedure. The
numbers in parenthesis help relating the different steps to
Figure 6.

a) (1) Deduce workload W 2 from an instance: A
difficulty of this approach is that the employee timetable has
to be calculated before the actual truck schedule is known,
since the truck scheduling model has not yet been run at this
stage. Hence, the workload has to be estimated. The proposed
solution is to define all tasks as defined by slots, i. e. all
tasks belong to set T 2. The slots are defined based on the
wishes of the transportation providers. The timetabling and
rostering models take the decision about when to carry out the
different tasks, within the predefined slots. In order to quantify
the workload regarding storage, an estimation τ stock is given
as the proportion of pallets which usually go to stock – for
instance, based on historical data. More precisely, workload
W 2 and slots S are defined for day d as follows – we denote
by HI (resp. HO) the set of hours that are in the preferred
time window of at least one inbound (resp. outbound) truck:

Unloading W 2
0d = |I| × ST 0

S0hd = 1 if h ∈ HI , 0 otherwise;
Control and scan W 2

1d = |I| × ST 1

S1hd = 1 if h ∈ HI , 0 otherwise;
Direct transfer W 2

2d = (1− τ stock)× ST 2

S2hd = 1 if h ∈ HI , 0 otherwise;
Transfer to stock W 2

3d = τ stock × ST 3

S3hd = 1 if h ∈ HI , 0 otherwise;
Transfer from stock W 2

4d = τ stock × ST 4

S1hd = 1 if hinHO, 0 otherwise;
Loading W 2

5d = |I| × ST 5

S5hd = 1 if h ∈ HO, 0 otherwise.

b) (2) Deduce new data Mh, N I
h , NO

h from the weekly
timetable: The staffing decisions made in the weekly schedule
create some constraints for the platform operations, in terms
of the number of persons available to carry out the different
tasks. Three new data elements are thus calculated from the
weekly timetable:

Mh maximum number of pallets that can be trans-
ferred at time unit h ∈ H, according to the weekly
employee timetable;

N I
h maximum number of pallets that can be unloaded

at time unit h ∈ H, according to the employees’
weekly timetable;

NO
h maximum number of pallets that can be loaded at

time h ∈ H, according to the employees’ weekly
timetable.

The values of Mh, N I
h and NO

h are deduced from the
allocation of employees to the transfer, unloading and loading
tasks (t = 0, t = 2, t = 5). For a given day d, they
are calculated from the weekly timetabling output x′etdh as
follows:

Mh =
∑
e∈E

x′e2dh
ST 2

∀h ∈ H (Equation 1)

N I
h =

∑
e∈E

x′e0dh
ST 0

∀h ∈ H (Equation 2)

NO
h =

∑
e∈E

x′e5dh
ST 5

∀h ∈ H (Equation 3)

Mh is obtained from the allocation of employees to task
2 (direct transfer). Variable x′etdh, which gives a number of
persons, is divided by the standard time of the operations
(in hour/pallet) to obtain a number of pallet for each hour.
Similarly, N I and NO are calculated from the allocation to
tasks 0 (unloading) and 5 (loading), respectively.

c) (3) Include new data Mh, N I
h , NO

h in the truck
scheduling model: The truck daily schedule is calculated every
day; in order to take into account the new staffing-related
information as soft constraints, three new constraints are added
to the truck scheduling model given in Figure 2:∑

o∈O,i∈I
xhio +

∑
i∈I,c∈C

sIhid ≤ N I
h + δIh ∀h ∈ H (10.1)∑

o∈O,i∈I
xhio +

∑
o∈O

sOho ≤ NO
h + δOh ∀h ∈ H (10.2)∑

o∈O,i∈I
xhio ≤Mh + εh ∀h ∈ H (10.3)

Πδ
0 =

∑
h∈H

δIh + δOh (23)

Πε
0 =

∑
h∈H εh (24)



Constraint sets (10.1), (10.2) and (10.3) give a penalty point
each time the soft constraint is violated, i. e. each time the
number of persons necessary to unload, load or transfer the
pallets is different from the workload determined by the daily
rostering model. The sums of these penalty points, defined
by constraints (23) and (24), are then added to the objective
function of the model given in Figure 2, thus the new objective
is to minimize α0Πα

0 + β0Πβ
0 + γ0Πγ

0 + δ0Πδ
0 + ε0Πε

0.

d) (4) Deduce W from the truck schedule: After the
truck scheduling model is solved with the new constraints and
new objective function, the output is used to calculate workload
W as detailed in section IV. The workload is used as an input
in the daily rostering model, together with the values of X
and Y fixed in the weekly timetable.

e) (5) Add interval flexibility in the daily rostering
model: For the daily truck schedule and employee roster to
be able to influence each other until a stable point is reached,
it is important to leave some flexibility to the daily rostering
model regarding the intervals in which the work can be done.
Therefore, constraint set (17) of the daily rostering model in
Figure 3∑

e∈E′′ x
′′
et1q = W 1

t1q ∀t ∈ T 1, q ∈ Q (17)

is replaced by constraint sets (17.1), (17.2) and (17.3) as
follows:∑
e∈E′′

x′′et1q = W 1
t1q + ε+

t1q − ε
−
t1q ∀t ∈ T 1, q ∈ Q (17.1)∑

e∈E′′,q∈Q

x′′et1q =
∑
q∈Q

W 1
t1q ∀t ∈ T 1 (17.2)

Πε
3 =

∑
t∈T 1,q∈Q

ε+
t1q + ε−t1q (17.3)

Constraint set (17.1) replaces constraint set (17) and changes
it into a set of soft constraints. Constraint (17.2) ensures that,
despite the flexibility provided to replace the work in different
time slots, the total amount of hours worked still matches the
workload. The objective function is changed in order to add
Πε

3, defined in constraint (17.3), to the objective function of
the daily rostering model defined in Figure 3.

f) (6) Iterate until reaching a stable point: Using the
daily roster, the values of Mh, N I

h and NO
h can be updated and

used to run the truck scheduling model again. The new versions
of the truck scheduling and employee rostering models are run
iteratively until a stable point is reached. The stable point is
considered reached when the values of the different penalties
that measure adjustments, i. e. Πδ

0, Πε
0, Πα

3 , Πβ
3 and Πε

3, do not
change any more. Table I recapitulates the different penalties
used in the models described in section III as well as the
penalties added to connect the two models. In some cases,
the iteration does not converge to a single stable point but to
a set of two, three or more solutions (oscillator): in this case
the loop is stopped and the solution with the smallest objective
function Π3 is chosen.

B. Trucks-first

Calculating the employees timetable first can favor the
employees, but leaving the employee-related model to decide
when the trucks should be docked could lead to strongly sub-
optimal truck schedules. In order to prevent that problem, the

Truck scheduling penalties Employee rostering penalties

Πα0 inbound truck time window
penalty

Πα3 shift changes compared to the
weekly timetable

Πβ0 outbound truck time window
penalty

Πβ3 task changes compared to the
weekly timetable

Πγ0 number of pallets in storage
Πδ0 transfer capacity violations
Πε0 loading/unloading capacity

violations
Πε3 interval changes for tasks in

T 1

TABLE I: Penalties description

trucks-first approach starts as the sequential approach: a truck
schedule is first calculated from the instance. The workload
W is calculated from the truck schedule (see section IV for
details) and used as input to generate the weekly schedule,
followed by the daily roster. While the sequential approach
stops there, the iterative approach questions this daily roster
to adapt it to the truck schedule constraints.

From the output x′′ of the daily roster, one can calculate
the values of Mq , N I

q and NO
q , which are capacity constraints

at time interval q ∈ Q for the transfer, unloading and loading
operations, respectively. The values of these data elements are
calculated as detailed in section V-A. The truck schedule is
then obtained with the new version of the truck scheduling
model described in section V-A, with constraints sets (10.1),
(10.2) (10.3), (23) and (24). Based on this truck schedule,
a new workload W is calculated and used as input for the
daily roster as well as the outputs of the weekly timetabling
model X ′′ an Y ′′. The version of the employee rostering model
used also replaces constraint set (24) by constraints sets (24.1),
(24.2) and (24.3) as detailed in section V-A, in order to add
flexibility regarding the possible intervals to execute each task.

Similar to the employees-first approach, the truck schedul-
ing and employee daily rostering models are run iteratively
until a stable point or an oscillator is reached – for the latter,
the solution with the smallest objective function Π0 is chosen.

VI. NUMERICAL RESULTS

In this section, exploratory numerical experiments are
carried out: the aim is to demonstrate that the method detailed
in section V is a valid way to combine the truck scheduling
model with the employee scheduling model. After a presen-
tation of the instance generation process in section VI-A,
section VI-B uses an example to show how the iterative ap-
proach outperforms the sequential approach. In section VI-C,
the performances of both iterative approaches (truck-first and
employees-first) are compared and discussed using a bigger
instance set.

A. Instance generation

The truck-related parts of the instances correspond to
the instance set3+3 described in Ladier and Alpan [21],
which is composed of 11 instances and available online3.
The employee-related parts of the instances are generated
randomly, using the generator proposed by Ladier et al. [12]
(available online along with the instances), with the number

3http://www.g-scop.fr/ gaujalg/ XDockInstances



of employees set to 10 for the instances where M = 17, and
set to 15 for the instances where M = 34. The time horizon
(number of hours |H|) on the employees side is set equal to
the value of |H| on the trucks side.

In order to keep the weekly and daily stages easily compa-
rable, the time unit considered when creating the daily roster
(interval) has a length of one hour, thus H = Q.

The value of τ stock, estimation of the percentage of pallets
that go through storage, is set to 3%.

B. Comparison sequential / iterative approaches

When introducing the iterative approach, we pointed out
the fact that reaching a local optimum for both models sep-
arately does not necessarily mean reaching a good solution
when both are combined. This point is illustrated in this
section by applying the sequential procedure and an iterative
one (here trucks-first) to instance 17_1. Instance 17_1 has
a time horizon |H| = 10, 5 inbound and 5 outbound trucks
(|I| = |O| = 5) serving 3 different clients.

a) Sequential approach: Instance 17_1 represents a
rather small platform, therefore the linear program presented
in section III can be used to find a truck schedule for the
crossdock in a reasonable time. The solution obtained, with an
objective value of 0 (Πα

0 = 0, Πβ
0 = 0, Πγ

0 = 0) is displayed
in Figure 7.
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Fig. 7: Sequential approach on 17_1: truck schedule

As a first approximation, let us assume that this truck
schedule will apply to each of the five days of the week. The
workload W corresponding to this truck schedule, as well as
the qualification matrix Q used in this instance, are as follows:

Wtd =


8 3 10 0 0 8
8 3 10 0 0 8
8 3 10 0 0 8
8 3 10 0 0 8
8 3 10 0 0 8

 Qet =



0 1 0 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0
1 0 1 0 0 0
1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 1 0 1
1 0 1 0 0 0


Note that two tasks related to storage have a null workload,
since no pallet is put in storage in this solution. Using this
workload as an input, the weekly timetabling models give the
timetable shown in Figure 8.

Employees 0, 2 and 5 are not put to work in this timetable
and are absent all week. Running the employee rostering model
for day d = 0 (Monday) gives a daily roster exactly equal to
the one displayed in Figure 8 for Monday, thus the objective
value for the daily rostering step is 0 (Πα

3 = 0, Πβ
3 = 0,

Πγ
3 = 0 and Πδ

3 = 0).

When looking at the objective functions only, this approach
seems very good since each model, taken independently, is
solved to optimum with no soft constraint violated. But can
these two results (truck timetable and employee daily roster)
be combined easily? Looking at the number of employees
allocated to each task at the different time units on Monday
(Figure 8), and using equations 1 to 3, we can calculate the
employee capacities available at every time unit h ∈ H:
M = [ 17 17 17 17 17 17 34 17 17 0 ]
N I = [ 20 20 20 20 20 0 0 20 20 0 ]
NO = [ 0 20 20 20 20 20 20 20 20 0 ]

For example, Figure 8 shows that two employees are
allocated to direct transfer at time h = 6, therefore M6 = 34.

Looking at the truck schedule used by the sequential ap-
proach (presented in Figure 7), we can see that those capacity
constraints are violated many times. The loading/unloading
capacities N I and NO are violated for 51 pallets in total
(all the pallets loaded or unloaded when the capacity is 0 for
those tasks), and the transfer capacity M for 17 pallets (all the
pallets transferred at time h = 9). That would be equivalent
to objective values Πδ

0 = 51 and Πε
0 = 17. Is it possible to do

better with the trucks-first approach?

b) Trucks-first approach: The trucks-first approach
starts exactly like the sequential approach, but the values of M ,
N I and NO are now integrated to the truck scheduling model
as soft constraints. The result, displayed in Figure ??, yields
to the objective function Π0 = 58 where Πα

0 = 1, Πβ
0 = 0,

Πγ
0 = 0, Πδ

0 = 57, Πε
0 = 0.

i = 0

i = 1

i = 2

i = 3

i = 4

h
=

0

h
=

2

h
=

4

h
=

6

h
=

8

o = 0

o = 1

o = 2

o = 3

o = 4

17 13 3

15 3 5 10

17 12

14 12 7

14 14 5

h
=

1

h
=

3

h
=

5

h
=

7

h
=

9

h
=

0

h
=

2

h
=

4

h
=

6

h
=

8

h
=

1

h
=

3

h
=

5

h
=

7

h
=

9

17 15 1

16 5 12

3 17 1 12

17 16

15 14 4

4

4

From this truck schedule, the detailed workload for each
interval q ∈ Q can be expressed as shown in Figure 9. Then,
using this workload as input, the daily rostering model is run
again to give the result shown in Figure 9. The corresponding
penalties are Πα

3 = 2, Πβ
3 = 6, Πγ

3 = 0, Πδ
3 = 0, Πε

3 = 8.
It means that there is a 2-hour change in the allocated shifts
compared to the weekly timetable (for employee 9) and 6 hours
of task changes (for the tasks of employee 8).

New capacity constraints can be derived from this em-
ployee roster:
M = [ 17 17 17 17 17 17 34 17 17 0 ]
N I = [ 20 20 20 20 20 40 20 20 20 0 ]
NO = [ 0 20 40 20 20 20 20 20 20 0 ]

and used in the truck scheduling model to obtain the truck
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Fig. 8: Sequential approach on 17_1: weekly timetable

Wt1q =



1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
2 1 2 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
0 0 0 0 0 0
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Fig. 9: Iteration 2 on 17_1:
employee roster

schedule in Figure 10, with penalties Πα
0 = 1 (because of the

hour added at h = 5 for inbound truck i = 2), Πβ
0 = 0,

Πγ
0 = 0, Πδ

0 = 37, Πε
0 = 0.
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Fig. 10: Iteration 2 on 17_1: truck schedule

The next iteration yields exactly the same solution –
therefore the procedure stops after three iterations in total.
The comparison between the sequential and the truck first
approach, in terms of value of the objective function, is done
in Table II. The trucks-first approach reduces the values of Πδ

0
and Πε

0, i. e. reduces the violations of the staff-related capacity
constraints. It also increases the value of Πα

0 (one inbound
truck is assigned to a time windows slightly different from its
wish) and the difference between the weekly timetable and the
daily roster (Πα

3 , Πβ
3 ), but it is a price to pay to make the truck

schedule and the employee roster more compatible.

C. Comparison employees-first / trucks-first

Intuitively, one could think that the employees-first proce-
dure favors the employees’ wishes, while the truck-first proce-
dure favors the transportation providers’ wishes instead. The
results obtained on instance set3+3, displayed in Table III,
confirm this idea. The first line correspond to instance 17_1

Truck timetable Employee roster

Πα0 Πβ0 Πγ0 Πδ0 Πε0 Πα3 Πβ3 Πε3

Sequential 0 0 0 51 17 0 0 0
Trucks-first 1 0 0 37 0 2 6 8

TABLE II: Sequential/trucks-first results for 17_1

already investigated in the previous section; 10 other instances
are tested besides. Most of the time, the values of Πα

3 and
Πβ

3 are smaller for the employees-first approach. All the other
penalties, however, are bigger for the employee approach. The
penalties regarding truck time windows assignments (Πα

0 and
Πβ

0 ), especially, are significantly bigger for the employees-first
approach compared to the trucks-first approach. On this set of
small instances, the trucks-first approach therefore dominates
the employees-first approach.

VII. CONCLUSION

This article demonstrates how an iterative procedure can be
used to combine a truck scheduling model and an employee
weekly timetabling and daily rostering model to plan the
operations of a cross-docking platform in an integrated manner.
Numerical experiments on small instances show that the best
results are obtained when the truck scheduling model is run
first. Further work is needed to check whether this result
scales-up for bigger instances, and to analyze the behavior of
the system when the different parameters change. Quantifying
the Pareto optimum would also be interesting.

The limits of this approach reside in the fact that no
fully integrated model is available, therefore the quality of the
solutions given by the iterative process cannot be compared
to the optimal value. A model integrating all the industrial
constraints of the truck scheduling and the employee rostering
would probably be too hard to be solved. However, the
different decomposition processes proposed by Guyon et al.
[17, 18] might be applicable to our case (or a simplified version
of it). They are exact methods yielding to optimal solutions.
Specifically, the cut generation process presented by Guyon
et al. [17] splits the model into a master problem, which
assigns a work pattern to each operator, and a sub-problem
which checks the feasibility of the assignment – this sub-
problem is actually a maximum flow problem on a directed
transportation network. Because the crossdock truck schedul-
ing problem also contains a maximum flow problem as a sub-
problem (see Ladier and Alpan [21]), applying the method



Employees-first Trucks-first

Ite. Πα0 Πβ0 Πγ0 Πδ0 Πε0 Πα3 Πβ3 Πε3 Ite. Πα0 Πβ0 Πγ0 Πδ0 Πε0 Πα3 Πβ3 Πε3

17_1 3 1 1 0 135 1 2 3 14 3 1 0 0 37 0 2 6 8
17_2 4 8 12 0 195 0 2 3 14 3 0 1 0 31 0 3 6 6
17_3 5 16 16 0 208 0 2 2 24 3 0 2 0 31 0 3 11 6
17_4 2 15 15 0 208 0 0 0 24 3 0 0 0 51 1 3 9 4
17_5 3 14 12 0 198 6 2 3 22 3 0 3 0 51 0 3 9 4
34_1 3 0 0 0 52 0 4 3 6 3 0 0 0 38 0 4 4 4
34_2 3 0 0 0 72 8 4 4 14 4 0 1 0 42 0 4 8 4
34_3 2 0 1 0 115 14 2 1 14 3 0 1 0 44 0 0 0 4
34_4 3 12 12 0 210 0 2 4 22 5 1 2 0 51 0 2 8 6
34_5 4 18 20 0 210 12 2 4 24 5 0 2 0 51 1 2 9 6
34_6 5 24 24 0 198 0 4 4 24 5 0 3 0 48 0 6 8 6

TABLE III: Results for both iterative approaches

proposed by Guyon et al. to the cross-docking environment
seems a promising idea. Applying Benders decomposition is
also a possible perspective in order to get an exact solution to
the integrated problem.
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